Nebulin-deficient mice exhibit shorter thin filament lengths and reduced contractile function in skeletal muscle

نویسندگان

  • Marie-Louise Bang
  • Xiaodong Li
  • Ryan Littlefield
  • Shannon Bremner
  • Andrea Thor
  • Kirk U. Knowlton
  • Richard L. Lieber
  • Ju Chen
چکیده

Nebulin is a giant modular sarcomeric protein that has been proposed to play critical roles in myofibrillogenesis, thin filament length regulation, and muscle contraction. To investigate the functional role of nebulin in vivo, we generated nebulin-deficient mice by using a Cre knock-in strategy. Lineage studies utilizing this mouse model demonstrated that nebulin is expressed uniformly in all skeletal muscles. Nebulin-deficient mice die within 8-11 d after birth, with symptoms including decreased milk intake and muscle weakness. Although myofibrillogenesis had occurred, skeletal muscle thin filament lengths were up to 25% shorter compared with wild type, and thin filaments were uniform in length both within and between muscle types. Ultrastructural studies also demonstrated a critical role for nebulin in the maintenance of sarcomeric structure in skeletal muscle. The functional importance of nebulin in skeletal muscle function was revealed by isometric contractility assays, which demonstrated a dramatic reduction in force production in nebulin-deficient skeletal muscle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced thin filament length in nebulin-knockout skeletal muscle alters isometric contractile properties.

Nebulin (NEB) is a large, rod-like protein believed to dictate actin thin filament length in skeletal muscle. NEB gene defects are associated with congenital nemaline myopathy. The functional role of NEB was investigated in gastrocnemius muscles from neonatal wild-type (WT) and NEB knockout (NEB-KO) mice, whose thin filaments have uniformly shorter lengths compared with WT mice. Isometric stres...

متن کامل

Thin filament length dysregulation contributes to muscle weakness in nemaline myopathy patients with nebulin deficiency.

Nemaline myopathy (NM) is the most common non-dystrophic congenital myopathy. Clinically the most important feature of NM is muscle weakness; however, the mechanisms underlying this weakness are poorly understood. Here, we studied the muscular phenotype of NM patients with a well-defined nebulin mutation (NM-NEB), using a multidisciplinary approach to study thin filament length regulation and m...

متن کامل

Nebulin regulates actin filament lengths by a stabilization mechanism

Efficient muscle contraction requires regulation of actin filament lengths. In one highly cited model, the giant protein nebulin has been proposed to function as a molecular ruler specifying filament lengths. We directly challenged this hypothesis by constructing a unique, small version of nebulin (mini-nebulin). When endogenous nebulin was replaced with mini-nebulin in skeletal myocytes, thin ...

متن کامل

Thin-filament length correlates with fiber type in human skeletal muscle.

Force production in skeletal muscle is proportional to the amount of overlap between the thin and thick filaments, which, in turn, depends on their lengths. Both thin- and thick-filament lengths are precisely regulated and uniform within a myofibril. While thick-filament lengths are essentially constant across muscles and species (∼1.65 μm), thin-filament lengths are highly variable both across...

متن کامل

Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.

The sarcomeric tropomodulin (Tmod) isoforms Tmod1 and Tmod4 cap thin filament pointed ends and functionally interact with the leiomodin (Lmod) isoforms Lmod2 and Lmod3 to control myofibril organization, thin filament lengths, and actomyosin crossbridge formation in skeletal muscle fibers. Here, we show that Tmod4 is more abundant than Tmod1 at both the transcript and protein level in a variety ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 173  شماره 

صفحات  -

تاریخ انتشار 2006